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Abstract 

Isoscalar surfaces in turbulent flows are found to be more complex than (self- 
similar) fractals, in both the far field of liquid-phase turbulent jets and in a re- 
alization of Rayleigh-Taylor-instability flow. In particular, they exhibit a scale- 
dependent coverage dimension, O*(X), for 2-D slices of scalar level sets, that in- 
creases with scale, from unity, at small scales, to 2, at large scales. For the jet flow 
and Reynolds numbers investigated, the isoscalar-surface geometry is both scalar- 
threshold- and Re-dependent; the level-set (coverage) length decreases with increas- 
ing Re, indicating enhanced mixing with increasing Reynolds number; and the size 
distribution of closed regions is well described by lognormal statistics at small scales. 
A similar 02 (X) b h e avior is found for level-set data of 3-D density-interface behavior 
in recent direct numerical-simulation studies of Rayleigh-Taylor-instability flow. A 
comparison of (spatial) spectral and isoscalar coverage statistics will be discussed. 

1. Introduction 

Following the introduction of Fourier spectra in the analysis of velocity corre- 
lations and the decomposition of turbulent kinetic-energy by G. I. Taylor (1938), 
descriptions of turbulent flow have largely relied on spectral measurement and ana- 
lysis methods. Subsequent contributions introduced the notion of similarity in the 
description of small-scale turbulence (Kolmogorov 1941a,b,c; “K41”) as discussed 
by G. K. Batchelor (1953) and J. 0. Hinze (1975), with important refinements and 
extensions subsequently put forth (e.g., Monin & Yaglom 1975, Frisch 1995). 
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The successes of these proposals, however, must be tempered by the host 
of turbulent-flow issues that cannot be addressed by correlation/spectral/moment 
analyses that classical descriptions have provided, that are also typically limited to 
uniform and isotropic flows. Part of the difficulty can be traced to the fact that in- 
formation offered by such analyses is not invertible. Given a process, its spectrum, 

for example, is specified. Knowledge of the spectrum, alone, yields only limited 
other information about the process. 

Such turbulent-flow issues often pose questions regarding the geometrical prop- 
erties of turbulence-generated fields. Examples of such issues include, heat and mass 
transfer in turbulent flows; mixing and chemically-reacting turbulent flows, requir- 
ing information about the surface-to-volume ratio of scalar level sets; aerooptics 
and optical-beam propagation through a turbulent medium, which (absent addi- 
tional modeling and assumptions) require geometrical information about index-of- 
refraction gradients; aeroacoustics and weak- and strong-wave propagation through 
turbulence, which rely on the geometrical properties of both scalar and velocity 
fields; and many others. While important progress has been made in these phe- 
nomena as well, which has derived considerable benefit from classical turbulence 
theory, in almost all cases, additional, often ad hoc, assumptions, variations, and 
models are employed, often implicitly. 

More recently, the realization that Direct Numerical Simulation (DNS) methods 
cannot hope to represent turbulent phenomena at the high Reynolds numbers of 
interest, especially when coupled to other physical processes that must be computed 
in parallel, has led to the quest for sub-grid-scale (SGS) models that describe the 
behavior of scales smaller than those that can potentially be numerically resolved. 
Significantly, classical models do not yield the necessary SGS models, which also 
require additional structure and assumptions, as would be employed in Large Eddy 
Simulations (LES) 1 1 t’ ca cu a Ions. Geometrical scaling information that would permit 
an extension of descriptions founded on an underresolved range of scales would 
facilitate this quest. 

An important contribution that addressed some geometric-scaling issues was 
made by B. Mandelbrot (1975, 1982), h p p w o ro osed that (power-law/self-similar) 
fractals could be used to describe level-set behavior of scalar and other turbulence- 
generated fields. A considerable body of experimental and modeling work by many 
investigators followed these proposals, as discussed by Sreenivasan (1991, 1994). 
An extension of these proposals, necessitated by recent experiments and direct 
numerical simulations, will be discussed below. 

.- 
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2. F’ractals and scale-dependent irregular level sets 

Mandelbrot (1975, 1977, 1982), proposed to apply the notion of stochastic 

geometric self-similarity to describe a host of physical phenomena, including turbu- 
lence. Level sets in a d-dimensional embedding space conforming to this description 
he dubbed as fractal and can be covered by a number of elements (boxes, tiles, line 
segments), Nd(X), of size X, given by, 

where, 

Dd = - 
dlOdb(~) 

dlogX ’ (lb) 

must be a constant. For level sets generated by turbulent flow, Eq. lb must be 
regarded as potentially applicable over some finite range of scales, only, i.e., 

Here 6 is the outer scale and Xi is the inner scale, e.g., viscous-/diffusion-scale 
maximum, of the flow. 

Irregular level sets need not be geometrically self-similar and may be charac- 

terized by a coverage, Nd(x), whose logarithmic derivative, Dd(X), may now be a 
function of scale, i. e., 

D&i) = - dl;o;;X) , (24 

which we may dub the (scale-dependent) coverage dimension. Inverting Eq. 2a leads 

to, 

&(A) = exp{ [D,j(A’) 7) , w 

for a coverage count normalized at X = 6, i.e., for Nd(d) = 1 (Takayasu 1982, 1992; 
Miller & Dimotakis 1991; Dimotakis 1991; and Catrakis St Dimotakis 1996a). A 
more complete discussion of these notions can be found in the review by Dimotakis 
& Catrakis (1996). 

Equations 2a,b are the counterparts of Eqs. lb,a, that may be regarded as a 
special case, with the more relaxed definition of Dd( A) in the former now allowing 
their application over the whole range of flow scales. They will be used to analyze 
two-dimensional slices of the scalar field in the far-field of liquid-phase turbulent 
jets and of the density field in a Rayleigh-Taylor-instability flow. 



3. Isoscalar geometry in turbulent jets 

In recent liquid-phase jet experiments (Catrakis SC Dimotakis 1996a), the fluid 

Schmidt number (SC N 2.0 x 10”) <and flow Reynolds number (Re 2: 4.5 x lo”, 

0.0 x lo”, and 18 x 10”) resulted in a jet-fluid concentration field with a complex, 

multiscale geometry. Laser-induced-fluorescence images of the scalar far field in this 
flow, in a plane normal to the jet aGs, are shown in Fig. 1. They span the whole 

jet-fluid-concentration field, at the z/dj = 275 downstream measurement location. 

FIG. 1 Laser-induced fluorescence scalar-field data in a liquid-phase turbulent jet 
at Re N 4.5 x lo3 (left) and 18 x lo3 (right) in a plane normal to the jet axis 
in the far field (z/clj = 275). Color denotes jet-fluid concentration level. 

. . . . . . 

Spatial spectra computed for the jet scalar-field data are shown in Fig. 2. The 
2-D spectrum (left) is for a single image realization (R.e = 0 x 10”) and very-nearly 
axisymmetric. Radial spectra, obtained by azimuthal integration, are also shown 
(right) for th e tl lree Reynolds numbers investigated. As can be seen, other than 
axisymmetry, very little information is conveyed by the 2-D spectrum; similarly 
for the radially-averaged spectra, which, however, indicate a decreasing wavenum- 
ber content with increasing Re, in contrast to classically-expected behavior. The e 
departure occurs at wavenumbers corresponding to scales roughly l/3 the image 
extent and are not the consequence of measurement resolution, which is adequate. 
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FIG. 2 Scalar spectrum for single image realization in a turbulent jet, at Re = 9 x lo3 
(left) and ensemble-averaged radial scalar spectra (right), for Re = 4.5 x 103, 
9 x 103, and 18 x 103; lines of increasing solidity denote increasing Re. 

The concentration data were thresholded at a level c(z, y) = ~2, corresponding 
to the peak in the scalar pdf at the two lower Reynolds numbers (cf. Catrakis SC 
Dimotakis 1996a, Fig. 8) and the &-size bounding box was computed, i.e., the 
circumscribing rectangle of the level set. At this threshold, & is independent of Re, 
within measurement statistics. Figure 3 depicts selected stages of a typical coverage 
sequence of a cz-level set, at Re 2 9.0 x 103, through binary subdivisions of the 
bounding box. Size is here defined as the square-root of the box/tile area. 

One &-size tile covers the set, i.e., Nz(6b) = 1, while four half-size tiles cover 
the set, i.e., Nz(X = &b/2) = 4, yielding &(A) -+ 2, as x + bb. As x gets smaller, 
only a fraction of the total number of tiles is needed, i.e., Nz(X) < N2,tot(X) = 

@b/A)*, and the coverage dimension decreases. Finally, at the smallest X’s, the 
coverage approximates the level-set contour. In this limit, N2 (X), increasing linearly 
with X, as X + 0. The latter limit can be assessed by computing the normalized 
scalar level-set coverage length, L(X), from the coverage count, N*(X), as a function 
of the coverage scale, X, i. e., 

L(x) = 
hb 

t const., asx+o. (3) 
This is plotted in Fig.4 (left), for the three Reynolds numbers investigated. As 
can be seen, the data indicate a scale-independent level-set coverage length, at 
small scales; a limiting behavior attained for scales higher than the measurement 
resolution. The data also indicate a level-set coverage length that decreases with 
increasing Re. 
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FIG. 3 Coverage sequence stages of a scalar level set in a liquid-phase turbulent jet 
(Re N 9.0 x 103). 

The coverage dimension, D2 (A), is shown in Fig. 4 (right), for the Reynolds 
numbers investigated (Eq. 2a). It is a smoothly-increasing function of scale, bounded 
by its limiting value of unity (topological dimension), at the smallest scales, and 2 
(embedding dimension), at the largest scales (cf., also, Miller & Dimotakis 1991). 
A similar behavior obtains for lower and higher values of the scalar threshold. 
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FIG. 4 Coverage length and coverage dimension as a function of (normalized) scale 
for scalar level sets in a turbulent jet. Re N 4.5 x 103: dotted/crosses; 
Re = 9.0 x 103: dashed/triangles; Re N 18 x 103: solid/squares. 

Both the coverage length and dimension indicate less-convoluted level sets 
with increasing Re, in accord with the radially-averaged spatial-spectrum sequence 
(Fig. 2, right). The limiting value of L(X), as X --j 0, and the coverage dimension, 
D*(X), at medium-to-large scales, both decrease with increasing Re. These findings 
are consistent with enhanced mixing, relative to stirring, as Re increases, leading to 
improved local homogenization of the scalar field and geometrically-simpler scalar 
level sets. These, in turn, result in lower surface-to-volume ratios, with increasing 
Re. This is manifest in the comparison plot of sample cz-level sets computed from 
Re = 4.5 x lo3 (left) and Re = 18 x lo3 (right) realizations (Fig. 5). 

.: ..; :. : ..:;. 

For such data, scalar level sets consist of individual (disjoint) “islands” and 
“lakes”, depending on whether the interior is at a lower, or higher, scalar level, 
respectively. It, is useful to analyze island/lake statistics, such as size and shape 
complexity. In the context of combustion, for example, an island would be associ- 
ated with an unburnt fuel pocket in a non-premixed turbulent-jet flame. Such an 
analysis indicates that the size distribution of such features is well approximated 
by a log-normal pdf, at small-to-intermediate scales (Catrakis & Dimotakis 1996b). 
Size here is defined as a, with A the individual island/lake area. 

Returning to chemical reactions and combustion in non-premixed hydrocarbon 

turbulent flames, in which combustion is largely confined to the instantaneous sto- 
ichiometric (isoscalar) surface (Burke & Schumann 1928)’ area-volume measures of .- 



FIG. 5 Scalar c2 level sets at Re N 4.5 x lo3 (left) and 18 x lo3 (right), indicating 
simpler topology at higher Reynolds number. 

the isoscalar surface may be used to relate the local burning rate to the time re- 
quired for the local consumption of unburnt fuel pockets. Such a measure, dubbed 

shape complexity, can be defined as, 

l<R*r 
P 

2 (srA)“* 
h 00, (4) 

in 2-D, where P is the perimeter and A the area of an island or lake, with (S&Jmin = 1 
attained for a circle, and corresponding extensions for ad, for higher-dimensional 
embedding spaces. The liquid-phase jet data described above indicate that a power 
law over 3 decades in size (6 decades in area) provides a good approximation for 
the pdf of shape complexity. This behavior is equivalent to log-Poisson statistics 
for fin2 (Catrakis & Dimotakis 1998). 

4. Isoscalar geometry in Rayleigh-Taylor-instability flow 

A coverage analysis was also performed on isodensity data from a Navier-Stokes 
DNS study of the evolution of a Rayleigh-Taylor-instability flow, of a SC s I//Z) = 1 
fluid. The flow was initialized with a p = 3 fluid on top and a p = 1 fluid on the 
bottom, in a 256* x 512 rectangular box. The three-dimensional DNS of the evolving 
flow was terminated when the spatial-resolution requirements could no longer be 
met by the fixed grid, at ReEnal M 1.1 x 103, based on the vertical extent and growth 
rate of the Rayleigh-Taylor mixing region (Cook 1998). 

.- 



FIG. 6 Rayleigh-Taylor-instability flow. p = 3 fluid initially on top, p = 1 fluid on 
the bottom. Plot of p = 2 isosurface at indicated times. 

The simulation utilized periodic boundary conditions in the boundary planes 
transverse to the acceleration vector, and no-slip at the top and bottom faces at the 
end of the long dimension of the box, which was aligned with the acceleration vector. 
A small-amplitude perturbation of the interface between the two fluids initialized 
the flow. Figure 6 illustrates the evolution of the ,O = 2 isosurface. 

.- 
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FIG. 7 Temporal evolution of scalar power spectrum (left) and coverage dimension 
(right) for a 2D slice (at mid-height) of the p = 2 isoscalar surface in a 
numerical simulation of the Rayleigh-Taylor-instability flow. 

Figure 7 (left) h s ows the time evolution of the spatial spectrum of the density 
field in the midheight plane, i.e., of P(X~Y,.Z = 0), for the indicated progression in 
time. The spectrum initially exhibits a temporal progression to lower wavenumbers, 
a result of diffusive smoothing of the initial density-field perturbation (recall that 

SC = 1 here). While the low wavenumber spectral content continues to increase, a 
sustained progression to higher wavenumbers with increasing time (for t > 1.4), can 
be seen, plausibly as the Rayleigh-Taylor and other, secondary, flow instabilities 
take over, with the spectrum reflecting the growth of small-scale features at the 
midheight plane. 

Figure 7 (right) plots the coverage dimension, D*(X), for the p(z, y, z = 0) = 2 
isodensity contours, in the same plane, computed by successive binary subdivisions 
of the midheight slice, as in the jet scalar-data analysis, above. The resulting 
scale-dependent coverage dimension 02 (A) can be seen to span the range of values 
from unity (the topological dimension)’ to 2 (the embedding dimension), smoothly 
transitioning between the two limiting values, at the smallest and the largest &ales, 
respectively. Interestingly, the temporal progression indicated by D*(X) is from 
small to large scales, for t 5 3.5, i.e., opposite the high-wavenumber trend in 
the spectral analysis. It is not until near the end of the simulation (for t 2 3.5), 
where a reversal of this trend is exhibited, at small scales only. The reasons for this 

apparent disagreement are instructive and will be discussed below. 



FIG. 8 Plot of p(x, y, z = 0; t) surfaces (left) and ~(2, yy, z = 0;t) = 2 contours 
(right), at times (top to bottom): t = 0.038, 1.875, 4.607, and 4.810. 
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The spectrum measures the wavenumber content of the selected density field, 

p(z,y,z = O;t), i.e., of the density surface over the midheight (5, y)-platie, while 
the level-set coverage analysis interrogates the geometry of the ~(5, y, z = 0; t) = 2 
contpurs in the midheight (x7 y)-plane, i.e., the slice of the former, at the p = 2 
elevation. These data are depicted in Fig. 8, left and right, respectively, at the indi- 
cated times. As can be seen by comparing the two early-time (t = 0.938 and 1.875) 
top figures, the contours (right) are becoming smoother, while the density surface 
is developing sharp peaks. The latter are responsible for the spectral progression to 
higher wavenumbers. This trend continues for a while, with a subsequent transition 
that can be seen in the behavior of the density surfaces (left). These develop a more 
complicated topology, characterized by folds between local maxima and minima, at 
late times (cf. Fig. 8, bottom: t = 4.607 and 4.810). Th is also registers in the level- 
set contours that can now clearly be seen to develop small-scale features, on top of 
the larger-scale features that continue to increase in size. 

Viewing the flow evolution through the three-dimensional density-field data 
(not discussed here) indicates that the likely cause of this transition is the devel- 
opment of secondary instabilities, of the Kelvin-Helmholtz type in the high-shear, 
near-midheight regions generated by the interpenetrating Rayleigh-Taylor fingers, 
and the formation of mushroom-like structures at their tips (cf. Fig. 6). The cross- 
over in the coverage dimension, Dz(X), at small scales for late times revealed this 
transition, even though there is scant, if any, evidence for it in the spectral data. 
It is an attestation of the scale-local capability of the coverage analysis that such 
geometrical properties were clearly registered in those statistics. They were subse- 
quently confirmed by computer-visualization of the corresponding field information. 

5. Conclusions 

Classical turbulence statistics and theories, while providing important guid- 
ance’ do not explicitly address geometrical issues. For such issues, new tools are 
and will be required, such as the ones derived from the original self-similar frac- 
tal ideas, extended to accommodate the behavior of scale-dependent irregular level 
sets. Statistics that derive from the coverage analysis of level sets provide many 
useful geometric measures that complement information from classical theories and 
analysis of turbulence. Two turbulent-flow cases, involving experimental data in 
the far-field of liquid-phase turbulent jets and a low-Re realization of a SC = 1 
Rayleigh-Taylor-instability flow, confirm the need for and utility of such extensions. 
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In particular, the scale-local nature of coverage analysis of irregular level sets makes 
it a better register of geometrical information, which is difficult to infer;at best, 
from spectral data alone. 
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